skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petek, Hrvoje"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As conventional electronic materials approach their physical limits, the application of ultrafast optical fields to access transient states of matter cap- tures imagination. The inversion symmetry governs the optical parity selection rule, differentiating between accessible and inaccessible states of matter. To circumvent parity-forbidden transitions, the common practice is to break the inversion symmetry by material design or external fields. Here we report how the application of femtosecond ultraviolet pulses can energize a parity-forbidden dark exciton state in black phosphorus while maintaining its intrinsic material symmetry. Unlike its conventional bandgap absorption in visible-to-infrared, femtosecond ultraviolet excitation turns on efficient Coulomb scattering, promoting carrier multiplication and electronic heating to ~3000 K, and consequently populating its parity-forbidden states. Interfero- metric time- and angle-resolved two-photon photoemission spectroscopy reveals dark exciton dynamics of black phosphorus on ~100 fs time scale and its anisotropic wavefunctions in energy-momentum space, illuminating its potential applications in optoelectronics and photochemistry under ultraviolet optical excitation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Molecular materials offer a boundless design palette for light absorption and charge transport in both natural photosynthesis and engineered photovoltaics. They function in combination as chromophores, donors, conductors, and acceptors, enabling the excitation and charge carrier transport through space and wire-like intramolecular pathways. Although quantum coher- ence is believed to enhance photoexcitation and photoinduced charge transfer, fluctuating and inhomogeneous environments accelerate decoherence. Here, we assemble a nanoporous medium consisting of a templated bipyridyl ethylene (BPE) molecule array on a Ag(111) surface that functions as an exceptional intermolecular nonnuclear quantum well conductor of coherent electron waves spanning over 20 Å length. Time-periodic driving of the Ag/BPE interface by femtosecond pulses promotes electrons into a ladder of Floquet quasi-energy donor states, where intermolecular quantum well states act as a resonant doorway for coherent electron transport into BPE/vacuum image potential acceptor states. The bifurcation of electron passage between the Floquet donor ladder and the charge transfer acceptor channel is recorded by projecting the active electrons into the photoemission continuum in an interferometric time- and angle-resolved multiphoton photoemission experiment. We find that exceptional decoupling of electrons from the metal substrate by the molecule- dressed vacuum preserves the coherence on the ∼150 fs time scale. This offers a new paradigm for quantum state design where a molecule-dressed vacuum mediates coherent electron transport in nanoporous molecular architectures. 
    more » « less
    Free, publicly-accessible full text available July 2, 2026
  3. Electromagnetic fields not only induce electronic transitions but also fundamentally modify the quantum states of matter through strong light-matter interactions. As one established route, Floquet engineering provides a powerful framework to dress electronic states with time-periodic fields, giving rise to quasi-stationary Floquet states. With increasing field strength, non-perturbative responses of the dressed states emerge, yet their nonlinear dynamics remain challenging to interpret. In this work we explore the emergence of non-adiabatic Landau-Zener transitions among Floquet states in Cu(111) under intense optical fields. At increasing field strength, we observe a transition from perturbative dressing to a regime where Floquet states undergo non-adiabatic tunneling, revealing a breakdown of adiabatic Floquet evolution. These insights are obtained through interferometrically time-resolved multi-photon photoemission spectroscopy, which serves as a sensitive probe of transient Floquet state dynamics. Numerical simulations and the theory of instantaneous Floquet states allow us to directly examine real-time excitation pathways in this non-perturbative photoemission regime. Our results establish a direct connection the onset of light-dressing of matter, non-perturbative ultrafast lightwave electronics, and high-optical-harmonic generation in the solids. 
    more » « less
    Free, publicly-accessible full text available March 6, 2026
  4. We apply ultrafast nanoscale microscopic imaging and analytical modeling to investigate the coherent field and spin textures of dual plasmonic vortices as a means to design the momentum flow, and spin topology by interaction of their gyrating fields. The ultrafast laser normal incidence illumination by circularly polarized light of two vortex generator structures with variable separations in silver films launches structured surface plasmon polariton fields. Two distinct primary vortices and a third emergent vortex, generated by interaction of the primary vortices and tunable by design of their separation, form through the spin–orbit interaction of light. The gyration of plasmon fields and the consequent vectorial Poynting momentum flow is imaged with sub-optical cycle phase and spatial resolution by interferometric time-resolved two-photon photoemission electron microscopy (ITR-2P-PEEM). The ultrafast imaging and analytical modeling of the interaction of the dual plasmonic vortices examines the nanoscale control of plasmon spin topology and momentum driven transport. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Molecular constructs define the elementary units in porous materials for efficient CO2 capture. The design of appropriate interpore and intermolecular space is crucial to stabilize CO2 molecules and maximize the capacity. While the molecular construct usually has a fixed dimension, whether its intermolecular space could be self-adjustable during CO2 capture and release, behaving as a balloon, has captured imagination. Here we report a flexible intermolecular space of the double chain structure of self-assembled 1,4-phenylene diisocyanide (PDI) molecules on Ag(110) surface, which dynamically broadens and recovers during the CO2 capture and release. The incipient PDI double chains organize along the [001] direction of Ag(110), in which individual PDI molecules stand up in a zigzag order with the interchain width defined by twice the Ag lattice distance along [11¯0] direction (2α[11¯0]). When CO2 molecules are introduced, they assemble to occupy the interchain spaces, expanding the interchain width to 3α[11¯0], 4α[11¯0] and 5α[11¯0]. Warming up the sample leads to the thermally-driven CO2 desorption that recovers the original interchain space. High-resolution scanning tunneling microscopy (STM) jointly with density functional theory (DFT) calculations determine the structural and electronic interactions of CO2 molecules with the dynamical PDI structures, providing a molecular-level perspective for the design of a self-adjustable metal-organic construct for reversible gas capture and release. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  6. Light is a preeminent spectroscopic tool for investigating the electronic structure of surfaces. Time-resolved photoelectron spectroscopy has mainly been developed in the last 30 years. It is therefore not surprising that the topic was hardly mentioned in the issue on ‘‘The first thirty years’’ of surface science. In the second thirty years, however, we have seen tremendous progress in the development of time-resolved photoelectron spectroscopy on surfaces. Femtosecond light pulses and advanced photoelectron detection schemes are increasingly being used to study the electronic structure and dynamics of occupied and unoccupied electronic states and dynamic processes such as the energy and momentum relaxation of electrons, charge transfer at interfaces and collective processes such as plasmonic excitation and optical field screening. Using spin- and time-resolved photoelectron spectroscopy, we were able to study ultrafast spin dynamics, electron–magnon scattering and spin structures in magnetic and topological materials. Light also provides photon energy as well as electric and magnetic fields that can influence molecular surface processes to steer surface photochemistry and hot-electron-driven catalysis. In addition, we can consider light as a chemical reagent that can alter the properties of matter by creating non-equilibrium states and ultrafast phase transitions in correlated materials through the coupling of electrons, phonons and spins. Electric fields have also been used to temporarily change the electronic structure. This opened up new methods and areas such as high harmonic generation, light wave electronics and attosecond physics. This overview certainly cannot cover all these interesting topics. But also as a testimony to the cohesion and constructive exchange in our ultrafast community, a number of colleagues have come together to share their expertise and views on the very vital field of dynamics at surfaces. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  7. The momentum-forbidden dark excitons can have a pivotal role in quantum information processing, Bose–Einstein condensation, and light-energy harvesting. Anatase TiO2with an indirect band gap is a prototypical platform to study bright to momentum-forbidden dark exciton transition. Here, we examine, by GW plus the real-time Bethe–Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE-NAMD), the many-body transition that occurs within 100 fs from the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2. Comparing with the single-particle picture in which the exciton transition is considered to occur through electron–phonon scattering, within the GW + rtBSE-NAMD framework, the many-body electron–hole Coulomb interaction activates additional exciton relaxation channels to notably accelerate the exciton transition in competition with other radiative and nonradiative processes. The existence of dark excitons and ultrafast bright–dark exciton transitions sheds insights into applications of anatase TiO2in optoelectronic devices and light-energy harvesting as well as the formation process of dark excitons in semiconductors. 
    more » « less